Mean ergodic theorem in locally convex linear topological spaces
نویسندگان
چکیده
منابع مشابه
A quantitative Mean Ergodic Theorem for uniformly convex Banach spaces
We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1] and T. Tao [11].
متن کاملRiesz Type Theorem in Locally Convex Spaces
The present paper is concerned with some representatons of linear mappings of continuous functions into locally convex vector spaces, namely Theorem. If X is a complete Hausdorff locally convex vector space, then a general form of weakly compact mapping T : C[a, b] → X is of the form Tg = ∫ b a g(t)dx(t), where the function x(·) : [a, b] → X has a weakly compact semivariation on [a, b]. This th...
متن کاملOn Convex Topological Linear Spaces.
Introduction. In an earlier article [9] the author developed at some length the theory of certain mathematical objects which he called linear systems. It is the purpose of the present paper to apply this theory to the study of convex topological linear spaces. This application is based on the many-to-one correspondence between convex topological linear spaces and linear systems which may be set...
متن کاملTopological number for locally convex topological spaces with continuous semi-norms
In this paper we introduce the concept of topological number for locally convex topological spaces and prove some of its properties. It gives some criterions to study locally convex topological spaces in a discrete approach.
متن کاملNotes on Locally Convex Topological Vector Spaces
Notes from a 1994–95 graduate course. Designed to supplement the topological vector space chapters of Rudin's Functional Analysis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1953
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-13-2-190-193